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SUMMARY

Hydrodynamic simulations of sloshing phenomena often involve the application of slip boundary con-
dition at the wetted surfaces. If these surfaces are curved, the ambiguous nature of the normal vector in
the discretized problem can interfere with the application of such a boundary condition. Even the use
of consistent normal vectors, preferred from the point of view of conservation, does not assure good
approximation of the continuum slip condition in the discrete problem, and non-physical recirculating
�ow �elds may be observed. As a remedy, we consider the Navier slip condition, and more successfully,
the so-called BC-free boundary condition. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid �ow simulations involving deforming domains in general, and free-surface �ow simu-
lations in particular, pose unique modelling challenges. Interface-tracking approach, in which
the computational mesh follows the deformation of the domain, and its boundaries always
coincide with the boundaries of the �uid, o�ers sharp resolution of the interface at modest
computational cost and is therefore useful in situations where the deformation is signi�cant
but not dramatic. However, the need to track the free surface via explicit enforcement of the
kinematic conditions (e.g. no-�ux), and the need to adapt the computational mesh in response
to the free-surface movement are some of the complications inherent in the interface-tracking
approach considered here. Free and moving boundary simulations have been the subject of
intense study—see e.g. References [1–5] and others.
In addition to the need to enforce the kinematic conditions at the free surface bound-

ary, hydrodynamic simulations routinely require that a paradox of moving contact line at a
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no-slip wetted surface be resolved [6]. Slip condition is thus employed, at a minimum, at
the portion of wetted surface immediately adjacent to the free surface. Moreover, simulations
that involve low-viscosity �uids and large length scales often call for the application of slip
boundary condition at the entire wetted surface. Such a condition is straightforward to apply
at boundaries that coincide with Cartesian co-ordinate planes, and is also routinely applied at
slanted and curved boundaries [7]. If these surfaces are in fact curved, the ambiguous nature
of the normal vector in the discretized problem can interfere with the proper representation of
full-slip boundary condition. Even the use of consistent normal directions [7], which are most
suitable for proper mass and momentum conservation, does not guarantee good approximation
of the continuum slip condition in the discrete problem, and non-physical recirculating �ow
�elds are observed in some numerical experiments.
We work in the context of the deformable-spatial-domain=stabilized space–time (DSD=SST)

�nite element formulation [8, 9], which has been applied to many classes of �ow problems
involving moving boundaries and interfaces [10]. In space–time methods, the stabilized �nite
element formulations of the governing equations are written over the space–time domain of
the problem. Consequently, changes in the shape of the spatial domain due to the motion
of the boundaries and interfaces are taken into account automatically, being re�ected in the
deformation of space–time elements. This approach has been successfully used to solve slosh-
ing problems [11], �ows past a surface-piercing obstacles [12, 13], as well as other classes
of deforming-domain problems [14, 15]. In the context of free-surface problems in complex
geometries, the DSD=SST formulation must be coupled with a suitable algorithm for the mo-
tion of the free surface, such as the standard elevation equation for �ows in channels with
vertical side walls, or a generalized elevation equation for �ows where the side walls may
be slanted or curved. Although space–time methods are used here, our discussion of the slip
boundary condition is equally applicable to the more traditional ALE approach [16].
In Section 2, we review the governing equations and their stabilized �nite element formu-

lation. In Section 3, we focus on the issue of proper application of slip boundary condition in
the presence of curved boundaries, and illustrate the problem in Section 4, while also propos-
ing a remedy in the form of BC-free boundary condition. We end with concluding remarks
in Section 5.

2. GOVERNING EQUATIONS AND DISCRETIZATION

We consider a viscous, incompressible �uid occupying a time-varying domain � t ⊂Rnsd , with
boundary �t , where nsd is the number of space dimensions. Velocity u(x; t) and pressure
p(x; t) �elds are governed by the incompressible Navier–Stokes equations:

�(u; t + u ·∇u − f)−∇ · �= 0 on � t (1)

∇ · u=0 on � t (2)

where f is the body force such as gravity, and the density � is assumed to be constant. For
a Newtonian �uid, stress tensor � is

�(u; p)=−pI+ 2�U(u); U(u)= 1
2(∇u+ (∇u)T) (3)
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where � is the dynamic viscosity. The Dirichlet and Neumann-type boundary conditions are:

u= g on (�t)g (4)

n · �= h on (�t)h (5)

where (�t)g and (�t)h are complementary subsets of the boundary �t .
The �nite element function spaces for the space–time method are based on the partition

of the time interval (0; T ) into subintervals In=(tn; tn+1), where tn and tn+1 belong to an
ordered series of time levels 0= t0¡t1¡ · · ·¡tN =T . Let �n=�tn and �n=�tn . We de�ne
the space–time slab Qn as the domain enclosed by the surfaces �n, �n+1, and Pn, where Pn is
the surface described by the boundary �t as t traverses In. As it is the case with �t , surface Pn
is decomposed into (Pn)g and (Pn)h with respect to the type of boundary condition (Dirichlet
and Neumann) being applied.
After introducing suitable trial solution spaces for the velocity and pressure [11], (Sh

u)n
and (Sh

p)n, and test function spaces, (V
h
u)n and (V

h
p)n, the stabilized space–time formulation

of Equations (1) and (2) is written as follows: given (u h)−n , �nd u h ∈ (Sh
u )n, and p

h ∈ (Sh
p)n

such that ∀w h ∈ (Vh
u )n and ∀qh ∈ (Vh

p)n:

�(w h; u h; t + u
h ·∇u h − f h)Qn + (U(w h); �(u h; ph))Qn

+(qh;∇ · u h)Qn + �((w h)+n ; (u h)+n − (u h)−n )�n

+
(nel)n∑

e=1

�
�
(�(w h; t + u

h ·∇w h)−∇ · �(w h; qh);

�(u h; t + u
h ·∇u h − f h)−∇ · �(u h; ph))Qen =(w h; hh)(Pn)h (6)

where (·; ·) are the appropriate scalar or vector function inner products over domain ,
(u h)±n = lim�→0 u(tn±�), and the parameter � follows the de�nition in Reference [11]. In most
applications of our method, both velocity and pressure �elds are represented using piecewise
linear continuous interpolation functions. We draw the reader’s attention to the last term in
Equation (6), which is a means of imposing tangent normal stresses hh at a domain boundary,
and will be essential in the discussion that follows. Note that h stands for applied traction
while superscript h denotes discretized quantities.
The non-linear system given by Equation (6) is solved with the Newton–Raphson method.

For deforming-domain free-surface simulations considered here, the governing equations for
the �ow �eld are augmented by two additional equations governing the deformation of the
mesh—the generalized elevation equation introduced in Reference [13] extended to curved
geometries, and the elasticity equation that governs the displacement of the interior mesh
nodes in response to boundary movement, described in Reference [17]. The exact form of
these equations is not recounted here, as it is not a prerequisite for the discussion that follows.
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3. SLIP BOUNDARY CONDITIONS

A slip boundary condition is often employed in hydrodynamic simulations at solid boundaries.
Slip condition is a means of circumventing the ‘kinematic paradox’, as described by Kistler
[6], of a moving contact line at a no-slip boundary. A wetting model may be employed as
part of the slip condition, as described by Baer et al. [5], and the condition itself may be
restricted to the small ‘slip zone’ in the immediate vicinity of the free surface. In the area of
application that motivates this work, i.e. for simulation of low-viscosity �uids such as water
in large vessels where the capillarity e�ects are negligible, a global slip condition with zero
tangent stress is both appropriate and convenient; it does not require a complicated wetting
model and simply allows the free surface to slide freely along the wetted boundary.
The slip boundary condition is a combination of Dirichlet and Neumann conditions, and

can be expressed in the following way:

n · u=0 on �slip

t · �(u; p) · n=0 on �slip

b · �(u; p) · n=0 on �slip

(7)

where n, t and b are the normal, tangent, and (in three dimensions) bi-tangent vectors at
the boundary. Alternately, Navier’s slip condition is sometimes used to account for the wall
friction:

n · u=0 on �slip

t · �(u; p) · n=�t · u on �slip

b · �(u; p) · n=�b · u on �slip

(8)

which prescribes a tangent stress proportional to the tangent velocity component with an
empirical coe�cient �. The implementation aspects di�er depending on the complexity of the
domain:

1. If the slip boundary coincides with a Cartesian co-ordinate plane, the implementation
is trivial, with the equations corresponding to the normal component of velocity simply
being dropped from the equation system.

2. If the slip boundary does not coincide with a Cartesian co-ordinate plane, the equations
corresponding to the velocity components at the boundary are locally aligned with the
normal-tangent-bi-tangent co-ordinate system, and the normal component of velocity is
set to zero. This procedure is described by Engelman et al. [7], who also advocate the
use of consistent normals for proper mass conservation.

In the second case, there is still a distinction between a slip boundary that is planar, with
a uniform distribution of the normal vector, and a curved boundary, for which the normal
vector varies depending on location. The non-uniform normal vector case is the subject of the
discussion that follows. Our test application, described in more detail in Section 4, involves
a circular cylindrical vessel shown in Figure 1, initially �lled with �uid up to its half-height,
placed in a uniform gravitational �eld and subsequently subjected to lateral oscillations.
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Figure 1. Circular vessel as an example of a simulation domain with curved domain boundaries.

(a) (b)

Figure 2. Nodal residual vectors in the discretized problem: (a) total nodal residual and
(b) tangent component of residual (magni�ed).

Let us �rst consider the case of stationary �uid, subjected only to a constant uniform
gravitational �eld f = {0;−g} (in two dimensions). The hydrostatic solution u= 0, p=−gy
clearly satis�es the governing equations (1) and (2). The same solution is naturally expected
to satisfy the discretized �nite element form (6) when every one of the node-centred linear
basis functions Na is taken as the weighting function w h. This can be numerically veri�ed at
all interior nodes. At the boundary nodes, a non-zero momentum equation residual is obtained,
as shown in Figure 2(a), and its normal component is dropped in accordance with the no-
penetration boundary conditions. The problem arises due to the fact that, in the discrete case,
the momentum equation residual at the curved boundary nodes also has a non-negligible
component in the tangential direction; this component is shown in Figure 2(b), magni�ed by
a factor of 1000 compared to Figure 2(a).
The reason for the non-zero tangential residual component becomes clear when one consid-

ers the di�erence between consistent normal directions at the nodes and the discrete residual
directions, illustrated in Figure 3. In the �gure, two boundary space–time edges Pin and P

j
n are

adjacent to the node a. Consistent normal direction takes into account the boundary integrals
indicated in the left subplot, with ni and nj assumed to be uniform along the corresponding
edge, and Na being the boundary trace of the basis function associated with node a. The
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Figure 3. Di�erence between computed residual direction and the consistent normal direction
at a node belonging to a curved boundary.

residual vector for the particular initial conditions considered here can be expressed as a sum
of boundary integrals indicated in the right subplot; due to varying p (e.g. increasing linearly
downward along each edge Pin and P

j
n) the resulting discrete residual will have a non-zero

tangent component in the co-ordinate system de�ned by the consistent normal vector na.
The non-zero residual signi�es the fact that the stationary velocity �eld will not satisfy

the discrete state equation, giving way to a non-zero velocity �eld that exhibits spurious
recirculation regions, as shown in Plate 1(a), with a velocity magnitude range of 06|u|63:40.
The Navier slip condition (8) can provide some resistance to that recirculation and improve the
situation somewhat, as shown in Plate 1(b), with a velocity magnitude range of 06|u|60:15.
It has been observed that the recirculation regions persist in time-dependent simulations,

when the tank is subjected to lateral oscillations. The slip-induced recirculation is not negligi-
ble when compared to the physical velocity �eld due to sloshing, and needs to be mitigated.
It is apparent that a certain amount of tangent stress needs to be applied in the discrete
problem to match the zero stress conditions of a continuum problem. In the stationary case,
the necessary stress contribution at node a can be computed as

(Na; hh)(Pn)h =[(Na; (−gy)ni)Pin + (Na; (−gy)nj)Pjn] · [I − nana] (9)

In other cases, the proper tangent stress correction is more di�cult to determine. We resort
here to the BC-free boundary condition, proposed by Papanastasiou et al. [18] and further
investigated in References [19, 20]. This boundary condition, inadmissible in the continuum
case but useful in the discrete case, extends the reach of the discretized governing equations
to the boundary, and has been to date successfully applied at the traction-free, or out�ow,
boundaries. From the implementation point of view, the boundary integral in (6) is evaluated
at node a using

(Na; hh)(Pn)h =[(Na; �(u h; ph) · ni)Pin + (Na; �(u h; ph) · nj)Pjn] · [I − nana] (10)

i.e. the unknown velocity and pressure �elds. As such, it produces contributions to both the
left-hand-side matrix, and, if the initial condition is non-zero, to the residual vector. The
normal component of this residual is dropped in the presence of no-penetration conditions,
but the tangent component is retained, and counters precisely the tangent discrete stresses that
lead to spurious recirculation. In the stationary case discussed above, the exact solution is
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(a) (b)

Plate 1. Spurious recirculating velocity �elds: (a) equilibrium velocity �led �=0:0 and
(b) equilibrium velocity �eld �=0:1.
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Plate 2. Circular tank: elevation history: (a) Navier slip �=0:1 and (b) BC-free boundary condition.
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Plate 3. Circular tank: velocity �eld at t=955:0, 967.5, 980.0 and 992.5 (top to bottom): (a) Navier
slip �=0:1 and (b) BC-free boundary condition.
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also the solution of the discretized equations when BC-free condition is applied at the slip
boundary. Further test in a non-stationary case is presented in the following section.

4. NUMERICAL EXAMPLE

The test problem, already outlined in Section 3, is a two-dimensional circular tank, with
the initial domain shown in Figure 4(a). The tank is subjected to a downward gravitational
acceleration of unit magnitude, and a sinusoidal horizontal acceleration with a magnitude of
0.1 and period of 16�. The �uid has unit density and a kinematic viscosity of 0.01, resulting
in a Reynolds number of approximately 100, based on maximum sloshing velocity observed.
The top boundary is the free surface, while the remaining boundary is subjected to three types
of boundary conditions discussed so far: conventional slip condition (7), Navier slip condition
(8) with �=0:1, and BC-free boundary condition (10).
The �nite element mesh consists of 768 quadrilateral elements and 1626 space–time nodes,

as shown in Figure 4(b). The nodes at the slip boundary are allowed to move along the
tank walls, i.e. along the line perpendicular to the consistent normal at those nodes, averaged
between the initial and �nal position within each time step. The nodes at the free surface move
along parametrized circular arcs using an extension of the method described in Reference [13].
An additional complication arises at the corner nodes corresponding to the edges of the free
surface. At these two nodes, the residual equations are aligned using normals computed using
the wetted surface edges only, and thus corresponding to directions shown in Figure 2(a). The
use of consistent normal at these points would lead to a violation of the kinematic conditions.
The �ow �eld is computed for 4000 time steps, with a time step size of 0.25, representing

approximately 20 excitation periods. At each step, four non-linear iterations are used, resulting
in four interspersed solutions of each of the systems involved (�uid, mesh, generalized eleva-
tion). A restarted GMRES solver with a Krylov space of 100 is used to solve the linearized
equations.
The history of vertical displacement of the two upper corner nodes of the mesh is shown

on Plate 2, for the case of Navier slip condition and BC-free condition. The conventional slip
condition results in non-physical levels of recirculation and a spurious elevation rise around
the symmetry line, and is not considered further. The Navier slip condition clearly damps
some of the �ne features of the sloshing, including the secondary waves clearly visible in

10.0

20.0

(a) (b)

Figure 4. Circular tank: problem description: (a) computational domain and (b) �nite element mesh.
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Plate 2(b). As seen in the velocity �eld snapshots in Plate 3(b), the solution obtained using
Navier slip condition is still exhibiting a degree of recirculation. On the other hand, the
BC-free results in Plate 3(a) is free of recirculation.

5. CONCLUDING REMARKS

Numerical experiments indicate, and analysis con�rms, that application of the slip boundary
condition at curved boundaries is not straightforward. The tangent component of the discrete
residual at a slip boundary is found not to vanish in a simple hydrostatic stationary �ow �eld,
and can induce a non-physical recirculating �ow, also observed in the transient case. The
Navier slip condition is found to provide some, but insu�cient, degree of regularization. On
the other hand, the BC-free boundary condition, extended to the slip boundary, is e�ective
in maintaining both the stationary hydrostatic solution, and the expected non-recirculating
transient solution.
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